Pre-Switch, Inc.
Extending EV range

Contact:
Christopher Rocneanu
Chris.Rocneanu@pre-switch.com
+4915121063411
Skype: Chris.Rocneanu
Info@pre-switch.com

The Paradigm Shift: AI SoftSwitching for EV inverters

Technology

Pre-Switch solution

Full soft-switching virtual eliminates transistor switching losses across all varying conditionsLarge efficiency gains for EV drivetrain inverter AND motor + other applicationsLowest system costs and highest efficiency of any power conversion architectureDiverse proprietary IP, 1 US patent and corresponding filings in foreign countries, multiple inventions, trade secrets and development tools

Replace today's non-differentiated inefficient EV inverter architecture

 Many other applications to follow

Benefits

```
5-12 % more EV
range or smaller
    battery
```


- Reduced SiC/IGBT transistors needed per amp delivered
- Shrinks DC link capacitor size and costs
- Permits IGBTs to nearly match SiC performance -
bypassing SiC constraints
- Facilitates low-cost discrete transistors to replace heavy expensive power modules

Performance

[^0]
Architecture

- Embedded AI real-time control, diagnostics, and safety for ARCP architecture
- Patented control solved decades of instabilities and corner case exceptions
- Senses, learns, predicts, adjusts, protects and continually optimizes efficiency

Fast edge speed solution

- Hard switched SiC increases transistor edge transition speeds for improved efficiency causing:
- Excessive EMI
- Destructive bearing currents in electric motors
- Break down motor insulation
- Voltage overshoot and ringing
- Pre-Switch: Adjustable edge speeds using integrated lossless dV/dt filter
- Saves motor insulation
- Eliminates bearing currents
- Detects arcing in bearings and insulation
- Significantly reduces inverter EMI

Ken Fonstad, ABB: "For a given motor voltage, the insulation stress increases as the rise time becomes
 shorter or the $d V / d t$ value becomes larger."

Algorithm initial power up and first learning (Pre-Flex Gen 4)

Switching cycles 0-2 (Initial start-up/turn-on with unknown starting conditions): Cycle 0: Large resonant current to ensure soft-switching on first cycle Cycle 1: Same large resonant current (first complete Al learning)
Cycle 2: First Al optimized switching cycle yields large adjustment

Switching cycles 2-19:

Subsequent Al learning and prediction compensates for changing system conditions including load current
Resonant inductor current increases with increasing load current Overshoot dramatically reduced

Green: L_{r} Resonant inductor current (varies with load)

Purple: $\mathbf{Q}_{2} \mathrm{~V}_{\mathrm{ds}}$ switch voltage ($600 \mathrm{~V}-0 \mathrm{~V}$)
Yellow: Aus $\$ L_{4}$ Auxiliary circuit and inductor voltage $(-300 \mathrm{~V}$ to $+300 \mathrm{~V})$

Blue: Load current varies (0-160A)

Pre-Switch, Inc.
Extending EV range

Eliminates switching losses (SiC E on turn-on)

Eliminates switching losses (SiC E ${ }_{\text {off }}$)

Pre-Switch: Lowers dV/dt to virtually any value required while lowering turn off losses

SiC switching loss comparison

SiC MOSFET Double Pulse Test (UJ3C120040K3S, 800V, 40A RMS @25C)	Pre-Switch (Resonant losses)	Pre-Switched (Main device losses, (3 switches in parallel)	Hard-Switch (device losses, 3 switches in parallel)	Savings
Rg on (per device)		0.17Ω,	1Ω	
Rg off (per device)		0.17Ω	20Ω	
Turn On Energy (mJ)	0.218	0	7.539	100.0\%
Turn Off Energy (mJ)	0	0	3.738	100.0\%
Total (mJ)	0.218	0	11.277	100.0\%
Total with overhead losses (mJ)	0.218	0	11.277	98.1\%

NOTE: IGBT switching loss reduction ~68-80\%

CleanWave2 efficiency

Efficiency vs Current, 800V
Pre-Switch CleanWave 2 reference inverter

CleanWave2 device temperatures

Device Temp \& Flow vs Current

- Bridge transistor losses and ARCP losses are conduction losses only
- Coolant flow rate 7.5 LPM
- $25^{\circ} \mathrm{C}$ coolant flow rate
- ARCP losses
- Half voltage switched at zero current
- Turn off and conduction losses only

$800 \mathrm{~V}, 100 \mathrm{kHz}$, Pre-Flex 5.2, 7.5LPM @ $25^{\circ} \mathrm{C}$

CleanWave2 losses

Losses vs Current, 800V

100kHz Fsw motor benefits

- Improves motor efficiency, range and reliability
- Reduced inverter output ripple
- Reduced common mode noise / bearing electrical etching
- Reduced iron losses and eddy currents
- Low dV/dt increases insulation reliability
- Enables lower cost/lighter low inductance motors

Induction heating in motor (efficiency loss)

Motor fundamental

Range improvements

250kW Permanent magnet motor

Safety benefits

Double protection with Pre-Switch

- Al manages events prior to the main switches turning on
- Detect faults early
- Fast fault detection of any switch stops all switching -preventing DC bus short circuit
- Fast current detection in resonant transition happens prior to main switch turn-on
- Shorter blanking time (due to no ringing) adds safety margin for SiC MOSFETs \& IGBTs

Business model

- Step 1: Customer onsite evaluation
- Customization of CleanWave for customer's Dyno
- Schedule Pre-Switch engineers with CleanWave
- 4 days testing at $50 \& 100 \mathrm{kHz}$

Pre-Switch Inverter Development Kit

CleanWave2 Schematics, layout, BOM, step files Resonant tank selector tool
$\{$ Pre-Switch Development System (PDS) 2.0 with DeepView Pre-Switch Pre-Tune (optional motor control) Pre-Switch DPT schematic for customer's power module

- Step 2: Development Program includes:
- Pre-Switch Inverter Development Kit
- IP License
- Industry expert training and support
- Chip, SW and support sold by project size
- Exclusivity available for certain markets

Development

- Industry experts
- Reference designs
- Development tools
- Inhouse Motor control

Pre-Switch lab: 250kW 3 Phase AC/DC PSU \& Dynamometer

Pre-Switch Development System -2.0 (PDS)

- Pre-Switch Development System 2.0 (PDS) :
- Controls Pre-Switch inverter reference design
- Controls customer's inverter
- Allows fine tuning of parameters and calibration
- Initial bring up assistance
- Access to DeepView diagnostics
- Real time monitoring with DeepFlow
- Full Remote support

DeepView (within PDS 2.0)

- Integrated digital oscilloscope within Pre-Flex (Gen 5)
- Diagnostics, timing analysis, and remote customer diagnostic support
- 16 channel 160 MSPS capability with 2048 samples
- Programable triggers

- Motor control and development
- Parameter detection
- Support for motor control
- CAN bus configuration
- RS485 connection

Pre-Switch lab: 250kW 3-Ph AC/DC PSU \& Dynamometer

Pre-Switch, Inc.

Pre-Switch, Inc.

- Paradigm shift for EV OEMs and Tier-1's
- Valuable efficiency differentiation for EV leadership
- Validated efficacy
- Active paying customers

Appendix

CleanWave 100 kHz Inverter
 250 kW

The CleanWave inverter is a high power, compact and lightweight soft-switching intelligent reference system optimized to drive electric motors with a "clean sine wave output
resulting from it's 100 kHz switching frequency operation. Engineers can quickly develop. Inverters with improved motor efficiency gains at 100 kHz without adapting their motor control. The CleanWave2 uses Pre-Switch's newest 5th Gen Pre-Flex ${ }^{\text {TM }}$ Al soft-switching algorithm for unparalleled adaptable soft-switching efficiency and safety. A peak efficiency of $>99.5 \%$ at 100 kHz is achieved using only two discrete United SiC $1200 \mathrm{~V} 9 \mathrm{~m} \Omega$ SiC FETs per switch position. The inverter includes integrated FieldOriented Control and a CAN bus interface. Customers may
utilize their proprietary motor control if desired. Additionally, many safety and self-diagnostic features have been added for robustness and reliability.
nverter Specifications

Inverter Specifications	
Parameter	Value
$\mathrm{V}_{\text {bus }}$ Operating	$400-900 \mathrm{~V}_{\mathrm{dc}}$
$\mathrm{V}_{\text {bus }}$ Nominal	$750 \mathrm{~V}_{\text {dc }}$
Continuous Output Current	$250 \mathrm{~A}_{\text {rms }}$
Size and Volume	$234 \times 159 \times 33 \mathrm{~mm}-1.23 \mathrm{~L}$
Weight ${ }^{2,3}$	2.8 Kg
PWM Frequency ${ }^{3}$	$10-100 \mathrm{kHz}$
Baseplate Temperature Range ${ }^{4}$	$0-80^{\circ} \mathrm{C}$
DC Link Capacitance ${ }^{5}$	Internal

Control Specifications	
Parameter	Value
CAN Bus	Standard
Resolver/Encoder input	Standard
System DC Power	10-20 V
Protection	Integrated
3 PWM inputs (RS422 voltage levels)	Custom order
${ }^{1}$ Operating for 30 seconds or less, depends o ${ }^{2}$ With flat baseplate option ${ }^{3}$ External dc link capacitance required for < 5 ${ }^{4}$ Derate after $60^{\circ} \mathrm{C}$ ${ }^{5}$ Low inductance interdigitated dc link bus ba free external dc link capacitors if needed	modulation type and cooling kHz PWM frequency (< 2nH) to allow resonant

www.pre-switch.con 2151 O’Toole Ave, Unit 30, San Jose, CA 95131

Reference system details

Pre-Flex SoC ICS10213

The ICS10213 is Pre-Switch's latest $5^{\text {th }}$ generation Pre-Flex SoC is built on Microchip's SmartFusion2 SoC. This FPGA+ARM solution includes the firmware and DSPs necessary for full soft-switching optimization of a forcedresonant soft-switching architecture known as ARCP. The firmware requires analog to digital conversion of key inverter sensors to make timing decisions necessary to successful softswitch power transistors at up to 100 kHz .

Specifications	
Parameter	Value
Pre-Switch Part Number	ICS10213
Package	VF400 BGA $(17 \times 17 \mathrm{~mm})$
Base Part	Microchip M2S010-VFG400I
Rated Switching Frequency ${ }^{1}$	$1-100 \mathrm{kHz}$
Temperature	$-40 \sim 100^{\circ} \mathrm{C}$ Industrial
	$-40 \sim 125^{\circ} \mathrm{C}$ Automotive ${ }^{2}$
RoHS	Yes
ARM Core Frequency	136 MHz
Input Clock Frequency	50 MHz
FPGA Fabric Frequency	160 MHz

Communication Specifications	
Parameter	Value
CAN Bus Protocol	2.08
CAN Baud Rate	$0.02 \sim 1$ Mbps
RS485	UART 460,800 Baud, 8 N 1
High Speed Serial Link	UART 6,000,000 Baud, 8N1
Serial Link to Additional ADC $\mu \mathrm{C}$	UART 460,800 Baud, 8N1
${ }^{1}$ In 3 phase system ${ }^{2}$ Special order required ${ }^{3}$ Compared with 10 kHz switching fr ${ }^{4}$ Total sampling rate. If using multipl channel	uency channels, sampling rate is divided per

Features / Benefits:
$5^{\text {th }}$ Gen Pre-Flex $x^{\text {TM }}$ embedded Al soft-switching alh $_{\text {then }}$ Gen Pre-Flex"wembedded Al soft-switching
algorithm $\rightarrow>$ virtual elimination of switching losses in balgorithm \rightarrow virtua
bridge transistors

- Full soft-switching across all varying conditions, such as input voltage, load, temperature, device degradation and output frequency
Enables $10 \times$ higher switching frequencies ${ }^{3}$ for highspeed motors and improved motor efficiency Optimized efficiency for all current levels using less transistor die area
DeepView ${ }^{\text {Tr }} 16$ channel integrated oscilloscope w/ complex triggering \& 160 MSPS 4 simplifies debug and provides remote diagnostics
DeepFlow ${ }^{\text {™ }}$ real-time inverter analytic data Fast fault detection and reporting
Fixed delay between PWM and switching edges simplifies motor control
Variable frequency PWM $->$ improves modulation index - Integrated dynamic dead time control improves modulation index
Allows customer-specific motor control servo loops in dedicated DSP
PWM control can be externally or internally generated Encrypted remote firmware update capability
Includes protection for
- Overvoltage
- Overcurrent
- Over temperature
- External DC link capacitor resonance Encrypted remote firmware update capability

Pre-Flex product brief

Pre-Flex ICS10213

Pre-Switch benefit summary

Hard-Switched

Virtually eliminates switching losses

- ~Elimination of transistor switching losses (A) -improves efficiency and allows high Fsw
- Increase inverter Fsw w/virtually no efficiency penalty
- Higher Fsw reduces inverter ripple current -improves motor efficiency
- Reduces size/quantity of transistors needed for same efficiency/power -lowers cost
- Reduces die temperatures lowers conduction losses -improves efficiency (B)
- Lossless configurable $d V / d t$ filter solves fast edge speed problems in motor insulation \& bearings (D)
- Extends paralleling of discrete component as alternative to power modules -saving money
- Allows low-cost Si IGBT to compete with SiC -lowers cost
- Reduces ringing that increases transistor stress, and which limits its working voltages (C)
- Enables SiC systems to switch 10-20X faster, IGBT 3-5X
- Operates outside of human audible range -eliminates cost of sound insulation
- Adds advanced/fast system safety features and system diagnostics at little or no cost
- Al generated current values eliminate second (redundant) current sensor needed
- Reduces conducted and radiated EMI costs
- Solves low cost SiC Cascode challenges to replace more expensive SiC MOSFET
- Elimination of transistor switching losses (A) -improves efficiency and allows high Fsw
- Increased inverter Fsw w/virtually no efficiency penalty
- Reduces amount/quantity of transistors needed for same efficiency/power -lowers cost
- Reduced die temperatures lowers conduction losses -improves efficiency (B)
- Higher Fsw reduces inverter ripple current -improves motor efficiency
- Reduces ringing that increases transistor stress, and which limits its working voltages (C)
- Enables SiC systems to switch 10-20X faster, IGBT 3-5X
- Allows low-cost Si IGBT to compete with SiC -lowers cost
- Solves dV/dt problems of SiC/IGBT induced motor bearing and insulation problems (D)
- Extends paralleling of discrete component as alternative to power modules -saving money
- Operates outside of human audible range -eliminates cost of sound insulation
- Adds advanced/fast system safety features and system diagnostics at little or no cost
- Al generated current values eliminate second (redundant) current sensor needed
- Integrated Discontinuous PWM
- Solves challenges enabling low cost SiC Cascode instead of more expensive SiC MOSFET

[^0]: * Based on estimated high volume 2026 automotive pricing

